
Gerald V. Brown
Glenn Research Center, Cleveland, Ohio

Albert F. Kascak
U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio

Ralph H. Jansen
University of Toledo, Toledo, Ohio

Timothy P. Dever
QSS Group, Inc., Cleveland, Ohio

Kirsten P. Duffy
University of Toledo, Toledo, Ohio

Stabilizing Gyroscopic Modes in Magnetic-
Bearing-Supported Flywheels by Using
Cross-Axis Proportional Gains

NASA/TM—2006-214027

January 2006

ARL–TR–3799
AIAA–2005–5955

U.S.  ARMY

RESEARCH LABORATORY



The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
           NASA Access Help Desk
           NASA Center for AeroSpace Information
           7121 Standard Drive
           Hanover, MD 21076



Gerald V. Brown
Glenn Research Center, Cleveland, Ohio

Albert F. Kascak
U.S. Army Research Laboratory, Glenn Research Center, Cleveland, Ohio

Ralph H. Jansen
University of Toledo, Toledo, Ohio

Timothy P. Dever
QSS Group, Inc., Cleveland, Ohio

Kirsten P. Duffy
University of Toledo, Toledo, Ohio

Stabilizing Gyroscopic Modes in Magnetic-
Bearing-Supported Flywheels by Using
Cross-Axis Proportional Gains

NASA/TM—2006-214027

January 2006

National Aeronautics and
Space Administration

Glenn Research Center

Prepared for the
Guidance, Navigation, and Control Conference and Exhibit
sponsored by the American Institute of Aeronautics and Astronautics
San Francisco, California, August 15–18, 2005

ARL–TR–3799
AIAA–2005–5955

U.S.  ARMY

RESEARCH LABORATORY



Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov

This work was sponsored by the Fundamental Aeronautics
Progam at the NASA Glenn Research Center.



NASA/TM—2006-214027 1

Stabilizing Gyroscopic Modes in Magnetic-Bearing-Supported 
Flywheels by Using Cross-Axis Proportional Gains 

 
Gerald V. Brown 

National Aeronautics and Space Administration 
Glenn Research Center 
Cleveland, Ohio 44135 

 
Albert F. Kascak 

U.S. Army Research Laboratory 
Glenn Research Center 
Cleveland, Ohio 44135 

 
Ralph H. Jansen 

University of Toledo 
Toledo, Ohio 43606 

 
Timothy P. Dever 
QSS Group, Inc. 

Cleveland, Ohio 44135 
 

Kirsten P. Duffy 
University of Toledo 
Toledo, Ohio 43606 

Abstract 
For magnetic-bearing-supported high-speed rotating machines with significant gyroscopic effects, it is necessary 

to stabilize forward and backward tilt whirling modes. Instability or low damping of these modes can prevent the 
attainment of desired shaft speed. We show analytically that both modes can be stabilized by using cross-axis 
proportional gains and high- and low-pass filters in the magnetic bearing controller. Furthermore, at high shaft 
speeds, where system phase lags degrade the stability of the forward-whirl mode, a phasor advance of the control 
signal can partially counteract the phase lag. In some range of high shaft speed, the derivative gain for the tilt modes 
(essential for stability for slowly rotating shafts) can be removed entirely. We show analytically how the tilt 
eigenvalues depend on shaft speed and on various controller feedback parameters. 

Nomenclature 
f  effective filter approximately representing all system filters 
gb  cross-axis gain for stabilizing backward whirl 
gca  general cross-axis gain 
gf  cross-axis gain for stabilizing forward whirl 
Ip  shaft polar moment of inertia 
It  shaft transverse moment of inertia 
r  complex tilt displacement 
ω0  tilt frequency for non-spinning shaft 
ωc  corner frequency of assumed filters 
λ  complex tilt eigenvalue 
ζ  damping constant for tilt motion 
Ω  adjusted non-dimensionalized shaft speed ≡ Ω’ (Ip/It)/ω0 
Ω’  shaft spinning speed 
Ω0  reference shaft adjusted speed for zeta reduction 
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I. Introduction and Approach 
High-speed flywheels are being considered for a variety of earth and space applications that require energy 

storage or attitude control. For long life and low energy loss at very high speeds, magnetic bearing support of the 
flywheels is preferred. However, these flywheels exhibit highly gyroscopic behavior which presents magnetic 
bearing control problems that do not arise for shafts with very small polar moments of inertia. We discuss 
approaches to the control of the gyroscopic modes that avoid high control effort and are simple to implement and 
understand. 

We consider only a rigid shaft and treat it as a free body, acted upon by external forces applied by two radial 
magnetic bearings and by the internally-generated gyroscopic torques. The axial degree of freedom is assumed to be 
controlled by an axial magnetic bearing and is ignored. The negative stiffness of linearized magnetic bearings is 
usually treated as part of the plant model. But to attain a “free body” treatment of the shaft, we presume that the 
negative stiffness is first nullified by appropriate proportional gains in the magnetic bearing controller. Then the 
normal modes of the shaft are pure center-of-mass translations and pure tilts about the center of mass. Hence we can 
use a centralized, modal-control approach that treats the rotor’s tilt and center-of-mass-translation modes 
independently. Control of the center-of-mass translation modes does not present any problems, and only the tilt 
modes exhibit speed-dependent gyroscopic effects. Consequently we treat only the tilt modes in this paper. 

The motivation to use cross-axis proportional gains stems from a desire to avoid the increase in noise and control 
effort associated with same-axis derivative gains or with cross-axis derivative gains, the latter of which arise in 
gyroscopic-cancellation techniques (ref. 1). In a conventional PID magnetic bearing controller, the shaft 
displacement is differentiated to get the shaft velocity so that the actuator can oppose that velocity and hence damp 
vibration. (Obtaining the velocity by differentiation or from an observer controller is required because velocity is 
rarely actually measured.) Extra derivative gain is required to counteract control system phase lags at high 
frequencies. But because of the special whirling nature of gyroscopic modes, it is possible to obtain the tilt velocities 
without differentiation. In a pure whirl mode the shaft tilt velocity in one plane is equal (to within a sign) to the tilt 
displacement in the perpendicular plane times the mode frequency. Since both displacements are always being 
measured, it would appear that differentiation can be avoided entirely. This would be straightforward to implement 
for a single whirl direction, but the sign of the required gain is opposite for the two whirling directions. The cross-
axis proportional gain that stabilizes forward-whirl destabilizes backward whirl and vice versa. 

The key to controlling both tilt modes at high shaft speeds is to utilize the considerable difference in their 
frequencies that develops at higher shaft speed. The forward-whirl mode frequency is asymptotic to (Ip/It)* Ω’, 
where Ω’ is the shaft angular speed and Ip and It are the shaft polar and transverse moments of inertia. The frequency 
of the backward-whirl mode is approximately inversely proportional to that of the forward-whirl. The mode 
frequencies can differ by more than two orders of magnitude in high-speed flywheels. We can therefore utilize two 
parallel paths through the controller which are separated by low- and high-pass filters. One path, containing a low-
pass filter, stabilizes the backward-whirl tilt mode with an appropriately-signed cross-axis proportional gain. The 
other path, containing a high-pass filter and an oppositely-signed cross-axis gain, stabilizes the forward-whirl mode. 
We therefore achieve very independent action on the two whirl modes at high shaft speed. Because the physical 
gyroscopic torques are proportional to the spinning speed of the shaft, it is convenient to gain-schedule the cross-
axis control terms by making them proportional to shaft speed.  

Phase lags in the closed control loop place a limit on the shaft speed at which the above simple method is 
sufficient. The forward-whirl mode frequency can become high enough that the system phase lags are appreciable. 
Hence that mode’s stability is degraded and eventually lost as shaft speed increases. (The lags come from the finite 
bandwidths of power amplifiers, position sensors, anti-alias and smoothing filters, as well as from controller 
sampling rate and latency and magnetic bearing core eddy currents.) In order to maintain stability to higher speed 
the frequency of the forward-whirl mode and the phase lags at that frequency can be measured or estimated as a 
function of shaft speed. With this information a “phasor” lead can be introduced to extend the benefits of cross-axis 
proportional gains to much higher shaft speeds. At a given shaft speed the tilt displacements in two planes can be 
expressed as a single complex “phasor” displacement. The control output can also be expressed as a complex 
phasor. The effect of the total system phase lag θ (at the forward-whirl frequency) on the complex control force is 
simply to multiply the intended force by exp (–i θ). The effect of the lag would be nullified if the control output 
command is multiplied by exp (i θ). Any smaller phasor advance that might be applied is better than none. In some 
range of high shaft speed, the derivative gain for the tilt modes (essential for stability for slowly rotating shafts) can 
be removed entirely. 
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II. Analysis and Results 
A. Infinite Bandwidth without Cross-Axis Gains 

Let the tilt angular displacements in the two perpendicular planes through the non-displaced shaft axis be 
designated by the real and imaginary parts of a complex variable r. Then the governing differential equation of shaft 
tilt motion, with only proportional and derivative feedback in the magnetic bearing controller and for infinite closed-
loop bandwidth, is (in agreement with the axes and sign conventions of refs. 2 and 3) 

 ( ) 02' 2
00

22 =ω+ζω+ Ω+ rdtdrdtdrIIidtrd tp  (1) 

where Ω’ is the shaft angular rotation speed, r is the complex tilt displacement, ω0 is the tilt frequency for the non-
rotating shaft and ζ is the tilt damping factor for the non-rotating shaft. (Note that the terms after the first two arise 
from magnetic bearing action; ω0 and ζ are determined by the proportional and derivative gains in the magnetic 
bearing control law, as well as by Ip/It.) The characteristic equation for the complex tilt eigenvalue λ’, obtained by 
assuming solutions of the form r = A exp (λ’ t), is 

 ( ) 02 2
00

2 =ω+λ′ζω+λ′ Ω′+λ′ tp IIi  (2) 

The imaginary part of λ’ is the modal angular frequency and the real part is the absolute growth rate (negative of 
damping) for the mode. It is convenient to non-dimensionalize by dividing each term of equation (2) by 2

0ω , 
yielding 

 0122 =+ζλ+λΩ+λ i  (3) 

where λ = λ’/ω0 and Ω ≡ Ω’ (Ip/It)/ω0. Thus all frequencies are measured in units of the non-spinning tilt frequency 
ω0, which is set by the proportional gain in the magnetic bearing controller. The negative of the real part of the 
eigenvalue, divided by ω0, is analogous to the damping factor ζ. The frequency ω0 may typically be on the order of 
2π times 50 Hz, as was roughly the case for the flywheel in reference 4. Equation (1) and subsequent characteristic 
equations were solved numerically for the eigenvalues by using commercial software. The two nondimensional 
eigenvalues, λ+ with positive frequency (forward whirl) and λ– with negative frequency (backward whirl) are 
plotted versus Ω in the appendix, along with other plots that show some interesting symmetries in the whirl 
frequencies and damping. It is shown there that a plot of log (Im (λ+)) and log (|Im (λ–)|) has a symmetry not 
revealed by a linear plot. Furthermore the loci of λ+ and λ– in the complex plane with Im (λ+) and |Im (λ–)| plotted 
on a log scale show more clearly how the eigenvalues are affected by the control law modifications discussed below. 
Such a plot of the solutions of equation (3) is shown in figure 1 for ζ = 0.05. In all eigenvalue plots we are plotting 
the real and imaginary parts of λ, a non-dimensional quantity. The axes of the plots should strictly be labeled “Non-
Dimensional Growth Rate” and “Non-Dimensional Frequency,” but we use “Growth Rate” and “Frequency” for 
simplicity. Note that the values of Ω run up to 100, which, for ω0 = 2π*50 Hz and Ip/It = 0.8, corresponds to a speed 
of 375,000 rpm, or for Ip/It = 1.2 to a speed of 250,000 rpm. Few flywheels run to such speeds; the large range is 
chosen to clearly show the asymptotic behavior. (Points are plotted for Ω = (0, 0.333, and 0.666) and for  
Ω = 100(n/10), n = 0, 1, …, 20, in order to give roughly even point spacing on the log scale.) Note that the eigenvalue 
for Ω = 0 is ~ (–ζ, 1), the point plotted in green. As shaft speed increases from zero, the non-dimensional forward-
whirl frequency increases from 1 and the backward decreases from the same value. (We henceforth speak of the 
backward-whirl frequency as a positive number.) As noted in the appendix, the forward-whirl eigenvalues appear to 
have higher damping than the backward. However, this is true only in the sense that their growth rate has a more 
negative value, reflecting their higher frequencies. When the real part of the eigenvalues are divided by the 
frequency (absolute value of the imaginary part), the two branches of the eigenvalue plot reveal the same damping 
ratio (or damping factor, loss factor or percent of critical damping). 
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Figure 1.—Non-dimensional eigenvalue loci for ζ = 0.05 and Ω values from  

0 to 100. The non-spinning eigenvalue (for Ω = 0) is shown in green. 
Forward-whirl eigenvalues are shown in red and backward-whirl eigenvalues 
in blue. Ω = 0, 0.333, and 0.666 and 100(n/10), for n = 0, 1, …, 20. 

B. Infinite Bandwidth with Cross-Axis Gains 
Now we introduce a cross-axis gain gca into the controller so that the differential equation for shaft tilt motion 

becomes 

 ( ) 0'2' 2
00

22 =Ω+ω+ζω+ Ω+ rgIIirdtdrdtdrIIidtrd catptp  (4) 

where we have inserted the cross-axis term with the same sign as the gyroscopic term. We have also chosen to 
explicitly insert the factor Ω’ (Ip/It) in the cross-axis term, since the gyroscopic term contains that same factor. The 
characteristic equation becomes (after non-dimensionalizing, as before) 

 0122 =Ω++ζλ+λΩ+λ cagii  (5) 

The resulting eigenvalues for ζ = 0.05, Ω = 100 (n/10), n = 0, 1, …, 10 and for gca = –0.025, 0.0, and 0.025 are 
shown in figure 2. One can see that a positive value of gca improves backward-whirl stability but degrades forward-
whirl stability. Conversely a negative value of gca improves forward-whirl stability but degrades backward-whirl 
stability. Note that gca = ζ gives uniform values of growth rate (= –ζ) for all Ω. 

To improve the stability of both modes, we can provide two cross-axis terms, corresponding to two separate 
parallel paths through the controller. In one path through the controller we place a forward-whirl cross-axis gain, gf, 
an explicit negative sign, and a first-order high-pass filter. In a second path we place a backward-whirl cross-axis 
gain, gb, an explicit positive sign, and a first-order low-pass filter. We choose the non-spinning tilt frequency as the 
corner frequency of both filters. The characteristic equation in this case becomes 

 ( ) ( ) 011122 =λ+λΩ−λ+Ω++ζλ+λΩ+λ fb gigii  (6) 

where gf, a positive number, is the gain that improves forward-whirl stability and gb, also a positive number, is the 
gain that improves backward-whirl stability. (We have changed the sign of the forward-whirl stabilizing term to 
allow both gains to have positive values.) The resulting eigenvalues for gf = gb = 0.025, ζ = 0.05, Ω = 100(n/10),  
n = 0, 1, …, 10, and Ω = 0, 0.333, and 0.666 are shown in figure 3 along with the eigenvalues for gf = gb = 0. Note 
that in the high-speed regions the damping of each mode has been improved by the value of the cross-axis gain. 
There are other branches of eigenvalues (introduced by the filters) with considerably higher damping. We do not 
plot those. For more extreme selections of the various gains, these branches can become less stable and must be 
reckoned with. It is seen that with low- and high-pass filters, the stability of both forward-whirl and backward-whirl 
modes can be improved, as indicated by the filled symbols in figure 3. 
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Figure 2.—Effect of Cross-Axis Gain. Positive gain improves stability of 

backward whirl but reduces stability of forward-whirl. ζ = 0.05. Ω = 0, 0.333, 
0.666 and 100(n/10), for n = 0, 1, …, 10. 
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Figure 3.—Effect of High- and Low-Passed Cross-Axis Proportional Gains. 

Open points are for cross axis (c.a.) gains equal to 0. Filled points are for  
gf = gb = 0.025 and ζ = 0.05. 

C. Effect of Finite Bandwidth with Filtered Cross-Axis Gains 
The appendix lists a number of sources of delays and phase lags that are typically found in a digitally controlled 

magnetic bearing system. We now consider the effect of these destabilizing influences. To qualitatively explore 
these influences, we arbitrarily pick 5 first-order filters, in series in the closed control loop, and all with the same 
corner angular frequency, ωc, measured in units of ω0. Thus every term in the controller is considered to be 
multiplied by the following factor, f: 

 ( )511 cf ωλ+≡  (7) 

The characteristic equation becomes 
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 ( ) ( )[ ] 011212 =λ+λΩ−λ+Ω+ζλ++λΩ+λ fb gigifi  (8) 

Some representative solutions for various values of ωc are shown in figure 4. We now plot values of Ω ranging only 
up to 40, which, if the non-spinning tilt mode is set at 50 Hz, would represent a shaft speed of 150,000 rpm for  
Ip/It = 0.8 or 100,000 rpm for Ip/It = 1.2. The points for ωc = 800,000 (effectively an infinite bandwidth, since ωc is 
measured in units of ω0) are for the same gains as the filtered cases plotted in figure 3. The value of ωc = 80 yields a 
total phase lag around the closed loop of about 70° at 1 kHz (for our usual example with ω0 = 314 rad/sec (50 Hz)). 
This is close to the phase lag at 1 kHz in the actual system described in reference 4. Note that the forward-whirl 
mode becomes unstable at about Ω = 20, or 75,000 rpm for Ip/It = 0.8 or 50,000 rpm for Ip/It = 1.2. Note that even 
the damping of the non-spinning tilt mode is reduced by more than half by the filters. 

Examine now to what extent increasing the tilt damping constant ζ can improve the stability of the forward-whirl 
mode. In figure 5, we show the eigenvalues for 3 values of ζ, namely ζ = 0.025, 0.05, and 0.075. We see that higher 
tilt damping ζ improves the forward-whirl stability until the frequency of the mode is somewhat over 20. Then more 
tilt damping is actually destabilizing.  
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Figure 4.—Effect of Finite Bandwidth on Eigenvalues. Ω = 0.333, 0.666  

and 40(n/10), n = 0, 1, …, 10. gf = gb = 0.025, ζ = 0.05. 
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Figure 5.—Effect of zeta on forward-whirl eigenvalues at high speed. Higher zeta  

improves forward stability up to about Ω = 20. gf = gb = 0.025. ωc = 80. 
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Consider now whether higher forward-whirl cross-axis proportional gain can help. Eigenvalues are shown in 
figure 6 for ζ = 0.05 and gb = 0.025 for three values of gf, namely (0.025, 0.05, and 0.075). Higher values of gf 
improve the stability of the forward whirl mode for lower speeds, but the same “barrier” appears at about the same 
frequency. The reason for this becomes clear from a look at the phase lag of the filter function f as a function of 
frequency, plotted in figure 7. We see that at a non-dimensional frequency of about 26, the phase lag is 90°. 
Damping can advance phase by at most 90°, so when the non-dimensional forward-whirl frequency reaches 26, the 
beneficial phase advance desired from damping is entirely obliterated by the system phase lag. But we can 
counteract the phase lags beyond this point with a phasor advance, as we now show. 
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Figure 6.—Effect of forward-whirl cross-axis gain on eigenvalues with  

significant phase lags present. gb = 0.025, ζ = 0.025, ωc = 80. 
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Figure 7.—Phase lag in closed-loop as a function of frequency. Product of five  

first order filters with corner non-dimensional frequencies of 80. 



NASA/TM—2006-214027 8

D. Effect of Phasor Advance with Finite Bandwidth and Filtered Cross-Axis Gains 
Now consider trying to counteract the phase lags discussed in the last section. If we multiplied the cross-axis term 

in the controller that contains the high-pass filter by a phasor, p, of unit magnitude, defined by 

 ( )[ ]{ }npoles
ciiArgp ωΩ−−≡ 11exp  (9) 

where npoles is the order of the filter, then we would expect to approximately counteract the system phase lags. An 
adequate approximation of equation (9) for high shaft speed is 

 ( )( )[ ]npolesip cωΩπ−≈ 4exp  (10) 

For Ω >> 1 this gives an approximation of the phase lags caused by the function f. That is, at high shaft speed, for 
which the forward-whirl frequency is asymptotic to Ω, this approximately nullifies the phase lags introduced by the 
function f, at least as far as the forward-whirl cross-axis feedback term is concerned. The characteristic equation then 
becomes 

 ( ) ( )[ ] 011212 =λ+λΩ−λ+Ω+ζλ++λΩ+λ fb gipgifi  (11) 

An eigenvalue plot for this case is shown in figure 8, along with the eigenvalues for no phasor correction. A plot of 
just the damping of the forward-whirl mode as a function of Ω is shown in figure 9. Inspection of the figures 8 and 9 
reveals that applying the phase correction gives little change in stability for Ω less than 10, but an increasing 
improvement at higher speed, raising the instability speed from 22 to 35 (which, for our example with the non-
spinning tilt frequency set at 50 Hz, would be from 82,500 rpm to 131,250 rpm for Ip/It = 0.8 or from 55,000 rpm to 
87,500 rpm for Ip/It = 1.2). However, as shown in figure 10, the magnitude of the filter f falls substantially below 1 
as Ω approaches 40. Therefore, a magnitude correction for the effect of the filter function f is warranted. We 
therefore replace equation (10) by  

 ( )( )( )npolesiMp cωΩπ−≡ 4exp  (12) 

where  

 ( )( )( )npoles
ciabsM ωΩ+≡ 11  (13) 
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Figure 8.—Effect of phasor corrections for system filters. gf = 0.075, gb = 0.5,  
ζ = 0.05, ωc = 80. Phasor applied to forward-whirl term only—red circles. Full 
phasor applied to both forward-whirl and damping term—blue triangles. 
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Figure 9.—Damping as a function of shaft non-dimensional speed for various 

phasor corrections. gf = 0.075, gb = 0.5, ζ = 0.05, ωc = 80. Phasor applied to 
damping term only—red symbols. Squares—no phasor. Open circles—unit-
magnitude phasor. Closed circles—full phasor. Blue triangles—full phasor 
applied to both forward-whirl and damping terms. 
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Figure 10.—Magnitude of assumed lumped filters in magnetic bearing  

closed loop. The magnitude M of the phasor is plotted. ωc = 80. 
 

 
In figures 8 and 9, it can be seen that the magnitude correction provides an increasing benefit with speed above 
about Ω = 6. Next consider the effect of applying the phasor correction to the term in equation (11) that contains zeta 
(which came from the first derivative term in the differential equation), rather than to the forward-whirl term. The 
characteristic equation then becomes 

 ( ) ( )( ) 011212 =λ+λΩ−λ+Ω+ζλ++λΩ+λ fb gigipfi  (14) 
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Figure 11.—Eigenvalues with phasor correction applied to derivative term and to  
both derivative and forward-whirl terms. gf = 0.075, gb = 0.5, ζ = 0.05, ωc = 80. 

 
 
 
 
The eigenvalues for this case are shown in figure 11 for the case where M is given by equation (13) (full phasor) and 
the case where M is set equal to 1 (phase correction only). Comparison of figures 10 and 11 indicates that a greater 
stability benefit is obtained by correcting the phase lag of the derivative term than by correcting the phase lag of the 
forward-whirl term, at least for the values of the other parameters used here. Correcting both has a still larger 
benefit, as is shown in figures 10 and 11 by the points plotted in blue. However, it should be remembered that the 
use of the derivative term entails noise amplification. 

E. Removal of Derivative Feedback at High Shaft Speed 
In figure 12 we plot the forward whirl eigenvalues (in open blue triangles, as in figs. 8 and 11, and using the same 

data as in those figures) that result from applying the full phasor correction, equations (12) and (13), to both the 
forward-whirl feedback term and the damping term, and the eigenvalues (in open orange symbols) with the full 
phasor correction applied to the forward-whirl term but with the damping constant ζ set equal to zero. It can be seen 
that above a non-dimensional speed of 3, the system is stable with ζ = 0. Thus we can expect that a transition from 
the open orange eigenvalues at low speed to the open blue eigenvalues at high speed would yield the benefit of 
stability at all speeds, but low noise generation at high speed where the system may be more vulnerable. As one 
illustration of this approach we choose to gain schedule the value of ζ in the following manner: 

 ( )( )n
00 1 ΩΩ+ζ=ζ  (15) 

where ζ0 is the initial value of ζ, Ω0 sets the shaft speed around which the transition to ζ = 0 takes place, and the 
exponent n governs the rapidity of the transition. As a specific example, plotted with filled red symbols in figure 12, 
we choose ζ0 = 0.05, Ω0 = 8, and n = 4. The transition between the limiting loci in blue and orange is clearly seen. 
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Figure 12.—Removal of damping feedback at high speed. Blue triangles—full  

phasor advance applied to both forward-whirl and damping terms with gf = 0.075, 
gb = 0.5, ωc = 8, ζ = 0.05; orange circles—gf = 0.075, gb = 0.5, ωc = 80, ζ = 0; Red 
circles—transition from ζ = 0.05 to ζ = 0.0 according to equation (15). 

 

III. Experimental Use of Methods 
The effectiveness of cross-axis proportional gains was experimentally demonstrated (ref. 4) on the “D1” energy 

storage flywheel unit (with Ip/It = 0.8) at Glenn at speeds up to 60,000 rpm and on predecessor flywheels. The 
qualitative effect of a single unfiltered cross-axis gain on forward-and backward whirl stability was easily seen by 
measuring the spectral density versus frequency of the position sensor signals. When the controller was of the type 
described by equations (4) and (5), one sign of gca raised the amplitude of the forward whirl peak in the spectral 
density and reduced the backward whirl peak. The opposite sign of gca had the opposite effect. The sharpening of 
each peak in turn was useful for accurate frequency measurements of the whirl modes. 

Filtered cross-axis gains, described by equation (6), had the predicted qualitative effect of reducing the spectral 
density peaks of both the forward and backward whirl modes. 

The phase advance method described by equations (10) to (14) was applied in a limited sense. Rather than 
attempting to use the full angular advance of equation (10), smaller angular advances were applied to the forward 
whirl controller term and/or to the controller’s damping term while the forward-whirl peak in the sensor spectral 
density was monitored. The advance was beneficial, but only enough advance was applied to render the peak size 
non-threatening. The magnitude correction of equations (12) and (13) was not attempted. The elimination of the 
damping term described at high shaft speed described by equation (15) has not been implemented. The reason for 
caution in applying these latter methods stems from the omission of flexible modes from the present analysis. The 
inclusion of these modes is beyond the intended scope of our analysis. However the flywheel of reference 4 had a 
flexible mode which was actually crossed by the synchronous shaft speed near the maximum design speed. Thus we 
could not expect the present analysis to adequately describe the system stability in that speed range. 

IV. Concluding Remarks 
We have approached the control of gyroscopic modes of a high-speed flywheel from the standpoint of classical 

control theory. We have assumed the use of a centralized modal controller that allows us to work with the tilt modes 
only, excluding motions not affected by gyroscopic influences. We have excluded flexible modes from the 
discussion. We have desired to get as simple and physical an understanding of the modal behavior and the effects of 
the various control approaches as possible. We have been motivated to produce a control strategy that generates low 
noise in the closed loop. A modern control approach could achieve this as well, but with less transparency. 
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Stability of both forward- and backward-whirl modes was shown to be improved by the use of cross-axis 
proportional gains, aided by high- and low-pass filters that permit the controller to affect the modes independently 
when the rotor speed is high. The forward-whirl mode stability was seen to be degraded at high rotor speed by 
system phase lags, because the forward-whirl frequency increases indefinitely with rotor speed. It was shown that 
the severity of the stability reduction can be reduced by applying a phasor advance in the controller to counteract the 
system phase lags. Lastly it was shown that the tilt damping feedback in the controller could be entirely removed at 
a sufficiently high shaft speed. 
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Figure A1.—Eigenvalues of equation (3), plotted  

without any alteration. Ω = 0, 0.333, 0.666  
and 100(n/20), n = 0, 1, …, 16. 
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Figure A2.—Eigenvalues of equation (3), plotted using 

absolute values of imaginary parts. Ω = (0, 0.333,  
0.666) and 100(n/20), n = 0, 1, …, 20. 
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Figure A3.—Eigenvalues of equation (3), with absolute 

values of frequencies plotted on log scale. Ω = (0,  
0.333, 0.666) and 100(n/20), n = 0, 1, …, 20.

Appendix 
A.  Relation between Forward- and  

Backward-Whirl Eigenvalues 
Consider a magnetically supported flywheel with 

infinite bandwidth in its closed-loop control system. 
The eigenvalues of the system are the solutions of 
equation (3). The imaginary parts of the solutions to 
equation (3) for Ω ≠ 0 have two signs. A plot of these 
eigenvalues on linear scales is shown in figure A1. The 
limits of the two solutions for Ω → 0 are (–ζ±i), plotted 
in figure A1 as the two green points. (Note that ζ = 0.05 
for this case.) As Ω increases, the forward-whirl 
frequency increases and the backward-whirl frequency, 
which has a negative value, decreases in magnitude. A 
plot of the eigenvalues with the frequency replaced by 
its absolute value is shown in figure A2, which gives a 
slightly better picture of modes developing from a 
common single non-spinning frequency. But the most 
illuminating plot of the eigenvalues is one in which the 
absolute value of the frequency is plotted on a 
logarithmic scale, as in figure A3. This reveals a 
symmetry that might have been unsuspected. The 
product of the absolute values of the frequencies is 
approximately constant and the sum of the absolute 
damping values (negative of the growth rates) is fixed. 
The absolute values of the frequencies of the two 
modes are plotted as a function of the spinning speed in 
figure A4. Now consider figure A3 again. It appears 
from the figure that the forward-whirl modes are better 
damped than the backward. This is true in the sense that 
they damp out faster in time; the absolute damping is 
higher. However, if the real part of each eigenvalue in 
figure 3 is divided by the absolute value of the 
imaginary part to obtain the fraction of critical 
damping, then the curve of figure A5 is obtained. See 
that the two modes are equally damped as a fraction of 
critical damping, that is, the amplitudes of forward and 
backward-whirl oscillations, initiated by some 
disturbance, will decay to a given fraction of their 
initial amplitudes in the same number of cycles. 
However, the elapsed time for decay to a given fraction 
of initial amplitude is shorter for forward whirl than for 
backward whirl.  

B. Sources of Phase Lags and Delays in 
Magnetic-Bearing-Supported Flywheel Systems 
Every component in a closed loop magnetic bearing 
system has a bandwidth which limits the high-
frequency response of the system and introduces phase 
lags. These phase lags may not severely affect rigid-
rotor backward whirl because of the low frequency of 
those modes. However, the frequency of the forward-
whirl mode is asymptotic to (Ip/It) * Ω’, and therefore 
may be on the order of a kilohertz for high speed 
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Figure A4.—Frequencies of forward- and backward-whirl as 

functions of the non-dimensional spinning speed. 
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Figure A5.—Eigenvalues with real parts plotted in terms of 
fraction of critical damping. Ω = (0, 0.333, 0.666)  

and 100 (n/20), n = 0, 1, …, 100. 

energy storage flywheels. Phase lags of several 
components can be appreciable at such a frequency 
and lead to forward-whirl instability. The sources of 
phase lag or delay include the following: 
 

(1) The lowest bandwidth in a magnetic bearing 
system is often that of the power amplifiers, which are 
commonly configured as transconductance amplifiers 
(voltage command input, current output), in 
combination with their inductive load. This bandwidth 
is usually only one or two kilohertz or less. We pick  
2 kHz for definiteness here, with a phase lag of the 
order of 22° at 1 kHz.  
 

(2) A digital controller implemented on a digital 
signal processor (DSP) can introduce serious phase 
lags. One of these (sometimes worse than the power 
amplifiers) comes from the anti-aliasing input filter in 
front of the processor that runs the control code. If the 
sample rate is 25,000/sec, the filter is usually set to 
cut off frequencies above the Nyquist frequency of 
12.5 kHz. The filter may be 6th order and produce a 
phase lag of the order of 30° at 1 kHz. 
 

(3) A digital signal processor board can also have a 
smoothing filter on the output that produces as much 
phase lag as the input filter. We suppose for this paper 
that there is only a first order filter at the Nyquist 
frequency of 12.5 kHz, giving a phase lag at 1 kHz of 
about 4°. 
 

(4) The sampling itself introduces a low-pass 
filtering effect with a corner at the Nyquist frequency. 
This gives about 5° at 1 kHz for a 25 kHz sampling 
rate. 
 

(5) Another lag, distinct from the sampling lag, is 
the latency delay in the controller. A signal introduced 
at the input (after the anti-aliasing filter) and sent directly to the output (before the smoothing filter) arrives there 
after some elapsed time, which is often on the order of the time between samples, but can be worse by the amounts 
of input and output settling times. This might add another 5° of lag at 1 kHz. 
 

(6) Another lag is due to eddy currents in the magnetic bearings. The magnetic field in the working gap lags 
behind the current in the windings by an amount that depends on the size of the bearing poles and the thickness of 
the laminations (mainly the latter). It can contribute 10 to 20° phase lag at 1 kHz. 
 

(7) The last obvious component that can introduce phase lag is the position sensor. In most cases the bandwidth of 
a sensor is 20 kHz or better, yielding no more than a degree or two phase lag at 1 kHz. 
 

To bring out general principles in this non-dimensional study without having to be specific on these phase lags, 
we lump all the filtering effects into a simple product of first order filters. We use a product of five first order filters, 
all with the same corner frequency, and measure that frequency in units of ω0, as is done with all frequencies. 
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TABLE I.—EXAMPLE PHASE LAGS IN A  
MAGNETIC-BEARING-SUPPORTED FLYWHEEL SYSTEM. 

Delay Source Phase Lag @ 1 kHz 
Power amplifiers (1st order @ 2 kHz) 22 
Anti-alias filter (6th order @ 12.5 kHz) 24 
Smoothing filter (1st order @ 12.5 kHz) 4 
Sampling @ 25 kHz 5 
Latency @ 25 kHz 5 
Magnetic core eddy currents  10 
Position sensors 1 
Total phase lag @ 1 kHz 71 

 
 
For a 25 kHz sampling rate, the above listed phase lags add up to 71° at 1 kHz. A product of five first-order filters 

will produce approximately that phase lag if the corner frequency ωc is set at about 4 kHz. For a 60,000 rpm  
(1000 Hz) flywheel this is 4 times the spinning frequency. In terms of an assumed non-spinning tilt frequency of  
50 Hz, the value of ωc would be 80. In the main text a number of results are presented for ωc = 80. 
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